(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
Tuples:
F(empty, z0) → c
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
S tuples:
F(empty, z0) → c
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c, c1, c2
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(empty, z0) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
Tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
S tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
Defined Rule Symbols:
f, g
Defined Pair Symbols:
F, G
Compound Symbols:
c1, c2
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
f(empty, z0) → z0
f(cons(z0, z1), z2) → g(z1, z2, cons(z0, z1))
g(z0, z1, z2) → f(z0, cons(z1, z2))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
S tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c1, c2
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
We considered the (Usable) Rules:none
And the Tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1, x2)) = x12
POL(G(x1, x2, x3)) = [2] + x12
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(cons(x1, x2)) = [2] + x2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
S tuples:none
K tuples:
F(cons(z0, z1), z2) → c1(G(z1, z2, cons(z0, z1)))
G(z0, z1, z2) → c2(F(z0, cons(z1, z2)))
Defined Rule Symbols:none
Defined Pair Symbols:
F, G
Compound Symbols:
c1, c2
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(1, 1)